
A scalable framework for multimedia knowledge
management

Yves Raimond, Samer A. Abdallah, Mark Sandler, Mounia Lalmas

Centre for Digital Music, Queen Mary, University of London
{yves.raimond,samer.abdallah,mark.sandler}@elec.qmul.ac.uk

Department of Computer Science, Queen Mary, University of London
mounia@dcs.qmul.ac.uk

Abstract. In this paper, we describe a knowledge management frame-
work that addresses the needs of multimedia analysis projects and pro-
vides a basis for information retrieval systems. The framework uses Se-
mantic Web technologies to provide a shared knowledge environment,
and active Knowledge Machines, wrapping multimedia processing tools,
to exploit and/or export knowledge to this environment. This framework
is able to handle a wide range of use cases, from an enhanced workspace
for researchers to end-user information access. As an illustration of how
the proposed framework can be used, we present a case study of music
analysis.

1 Introduction

Information management is becoming an increasingly important part of multi-
media related technologies, ranging from the management of personal collections
through to the construction of large ‘semantic’ databases intended to support
complex queries. One of the key problems is the current gap between the devel-
opment of stand-alone multimedia processing algorithms (such as feature extrac-
tion, or compression) and knowledge management technologies. The aim of our
work is to provide a framework that is able to bridge this gap, by integrating the
multimedia processing algorithms in an information management system, which
can then be usable by different entities in different places. We also want to pro-
vide a way to semantically describe these algorithms in order to automatically
use them. For example, we might want to dynamically compute the segmenta-
tion of a sequence of a football match in order to answer a query like ‘give me
all the sequences corresponding to a corner’.

In order to achieve this goal, we introduce several concepts. A Knowledge
Machine aims to help people developing, encapsulating or testing multimedia
processing algorithms, by designing a semantic workspace. Instances of such
machines interact with a set of end-points, which are entry points to a shared
knowledge environment, which is itself based upon Semantic Web technologies.
This interaction can be either to request knowledge from this environment (in
order to test algorithms, or to use external information in the algorithm) or
to export new knowledge onto it (to make new results publicly available). An



Fig. 1. An overview of the framework

end-point can also have a planning [1] role, as part of the knowledge environ-
ment describes these Knowledge Machines, and the effect of using some of their
algorithms. Moreover, these end-points can be used by other entities (such as
a personal audio player), which may benefit from some information potentially
held by this knowledge environment. A simplified overview of the system is given
in fig. 1.

The proposed framework is the first step to bridge the above mentioned gap.
Indeed, the algorithm is entirely handled from its implementation process to its
impact on a shared knowledge environment, which can either be used by other
researchers or by information access systems. Moreover, new knowledge can be
dynamically added (either from ‘ground truth’ sources or from Knowledge Ma-
chines plugged onto the knowledge environment), as well as new Knowledge
Machines. This web approach allows the creation of a scalable knowledge man-
agement system.

In § 2 we will describe the structure behind the Knowledge Machines. We
will then focus on the shared knowledge environment in § 3, and how it deals
with instances of Knowledge Machines. Next, we will focus on two completely
different use cases of the system in § 4, in order to give an idea of the wide range
of possibilities this framework brings. Finally, § 5 will present a case study on
knowledge management for music analysis.

2 Knowledge Machines

In this section, we describe the Knowledge Machine architecture (described in
greater detail but in a more specific context in [2]), which is able to design



a workspace for handling and/or developing multimedia processing algorithms.
With complex algorithms, there are often many shared steps of computation,
multiple computation strategies, and many free parameters that can be varied
to tune performance. This can result in a very large amount of final and in-
termediate results, which needs to be managed in order to be used effectively.
fig. 4 gives a global view of the Knowledge Machines architecture, built around a
unique knowledge representation framework (see § 2.1), a computational engine
(see § 2.2) and tabling of results (see § 2.3).

2.1 Knowledge representation for data analysis

In this section, we will describe the main approach for storing the results of the
different computations, which can occur while working on a set of multimedia
processing algorithms. Its limitation is what led us to using another approach,
which will also be described in this section, using predicate calculus for knowledge
representation.

The dictionary approach The resulting data is often managed as a dictio-
nary of key-value pairs—this may take the form of named variables in a Matlab
workspace, files in a directory, or files in a directory tree (in which case the keys
would have an hierarchical structure). This can lead to a situation in which,
after a Matlab session for example, one is left with a workspace full of objects
but no idea how each one was computed, other than, perhaps, cryptic clues in
the form of the variable names one has chosen.

The semantic content of these data is intimately tied to knowledge about
which function computed which result using what parameters, and so one might
attempt to remedy the problem by using increasingly elaborate naming schemes,
encoding information about the functions and parameters into the keys. This is
a step toward a relational structure where such information can be represented
explicitly and in a consistent way.

Relational and logical data models We now focus on a relational data model
[3], where different relations are used to model the connections between param-
eters, source data, intermediate data and results. Each tuple in these relations
represents a proposition, such as ‘this spectrogram was computed from this sig-
nal using these parameters’ (see fig. 2). From here, it is a small step to go beyond
a relational model to a deductive model, where logical predicates constitute the
basic representational tool, and information can be represented either as facts
or as composite formulæ involving the logical connectives if, ∃ (exists), ∀ (for
all), ∨ (or), ∧ (and), ¬ (not) and ≡ (equivalent to) (see [2] for a short review
of predicate calculus for knowledge representation).

For example, in this model, the previous proposition could be expressed using
this predicate:

spectogram(DigitalSignal, FrameSize,HopSize, Spectrogram)



spectrogram

Natural

Array

Signal Real

hopSize

frameSize

sampleRate

Fig. 2. The relations involved in defining a spectrogram

In addition, we could imagine the following for the digital representation of a
signal:

digitalsignal(DigitalSignal, SampleRate) if
∃ContinuousSignal. sampling(ContinuousSignal,DigitalSignal, SampleRate)

2.2 Evaluation Engine

The computation-management facet of the Knowledge Machines is handled through
calls to an external evaluation engine. The latter is used to reduce a given ex-
pression to some canonical form. For example, a real-valued expression involv-
ing mathematical functions and arithmetic operators would be reduced to the
floating-point representation of the result. Standard Prolog itself provides such a
facility through the is operator. By using an interface to an interpreted language
processor, such as Matlab , a much richer class of expressions can be evaluated,
involving complex numbers, arrays, structures, and the entire library of Matlab
functions available in the system.

For example, if we define the operator === as evaluating terms representing
Matlab expressions, we can define (in terms of predicate calculus) a matrix
multiplication like this:

mtimes(A,B, C) if C===A ∗B

We can now build composite formulæ involving the predicate mtimes.
Interpreters for different expression languages could be added, provided that

a Prolog representation of the target language can be designed.

2.3 Function tabling

To keep track of computed data, we consider tabling of such logical predicates.
Some predicates, when used in a certain way (in a particular mode), can be con-
sidered as ‘functional’—one possible resulting tuple given a set of inputs (such
as mtimes, when used with the first and the second argument bound, and the
third one unbound). If we store the tuples generated by the functional predi-
cates, then we can save ourselves some evaluations, because of this functional



mode. Moreover, the function tabling mechanism allows us to access functional
predicates in all modes. Given the produced data, we can obtain back to the
inputs and parameters that were used to create them.

For example, if we declare the predicate mtimes (declared as in § 2.2) to be
tabled, and we have two matrix a and b, the first time mtimes(a,b,C ) will be
queried the Matlab engine will be called. Once the computation done, and the
queried predicate has successfully been unified with mtimes(a,b,c), where c is
actually a term representing the product of a and b, the corresponding tuple
will be stored. When querying again mtimes(a,b,C ), the computation will not
be done, but the stored result will be returned instead. It also means that, given
c, we can get back to a and b, using the query mtimes(A,B,c).

2.4 Implementation

Knowledge Machines are built on top of SWI Prolog1 (which is one of the most
user-friendly Prolog) and PostgreSQL2. The workspace they implement is ac-
cessible through a Prolog command-line, and new facts, composite formulæ or
new evaluation engines can be directly asserted through it, or through external
source files.

Each Knowledge Machine also wraps a component able to make it usable
remotely. This can be seen as a simple Servlet, able to handle remote queries to
local predicates, through simple HTTP GET requests. This will be useful when
other components of the framework (such as the planner described in § 3.4) have
a global view of the system and need to dynamically organise a set of Knowledge
Machines.

3 A Semantic Web Knowledge Environment

In this section, we describe how we provide a shared and distributed knowledge
environment, using Semantic Web technologies (see § 3.1) and a set of domain
ontologies (see § 3.3). We will also explain how Knowledge Machines can inter-
act with this environment in § 3.2, using entry doors generated using the tool
described in § 3.4.

We will refer to several technologies, all part of the Semantic Web effort,
which we will briefly overview here. RDF (Resource Description Framework3)
defines how to describe resources (located by an Universal Resource Identifier
4), and how to link them, using triples (sets of subject/predicate/object). For
example, using RDF, I can express that the resource representing a given artist
has produced several albums. An OWL (Ontology Web Language5) ontology
is able to express knowledge about one particular domain by identifying its
1 see http://www.swi-prolog.org/
2 see http://www.postgresql.org/
3 see http://www.w3.org/RDF/
4 see http://www.gbiv.com/protocols/uri/rfc/rfc3986.html
5 see http://www.w3.org/2004/OWL/



important concepts and relations, in RDF. SPARQL (Simple Protocol And RDF
query language6) defines a way to query RDF data. Finally, a SPARQL end-point
can be seen as a public entry door to a set of RDF statements.

3.1 Why use Semantic Web technologies?

The ‘metadata’ mistake In this shared knowledge environment, we may want
to state circumstances surrounding the creation of a particular raw multimedia
data. One option is to ‘tag’ each piece of primary data with further data, com-
monly termed ‘metadata’, pertaining to its creation. For example, CDDB7 asso-
ciates textual data with a CD, while ID38 tags allow information to be attached
to an MP3 file. The difficulty with this approach is the implicit hierarchy of
data and metadata. The problem becomes acute if the metadata (eg the artist)
has its own ‘meta-metadata’ (such as a date of birth); if two songs are by the
same artist, a purely hierarchical data structure cannot ensure that the ‘meta-
metadata’ for each instance of an artist agree. The obvious solution is to keep a
separate list of artists and their details, to which the song metadata now refers.
The further we go in this direction, i.e. creating new first-class entities for people,
songs, albums, record labels etc., the more we approach a fully relational data
structure.

Towards a scalable solution We also want this data structure to be dis-
tributed. Any entities contributing to the knowledge environment may want to
publish new assertions, eventually concerning objects defined in an other place.
This is why we are using RDF. We also want to be able to specify what types
of objects are going to be in the domain of discourse and what predicates are
going to be relevant. Designing an ontology [4] of a domain involves identifying
the important concepts and relations, and as such can help to bring some order
to the potentially chaotic collection of predicates that could be defined. We may
also want to dynamically introduce new domains in the knowledge environment.
This is why we are using OWL.

3.2 Integrating Knowledge Machines and the Knowledge
Environment

Querying the Semantic Web within Knowledge Machines Another char-
acteristic of the Knowledge Machines is the ability to query the Semantic Web
(through a set of end-points, as we will see in § 3.4) using SPARQL. Someone
working on a Knowledge Machine is able to create an interpretation of the theory
(OWL ontologies) in the form of a collection of predicates. It is then possible
to use these predicates when building composite formulæ in the language of
predicate calculus.
6 see http://www.w3.org/TR/rdf-sparql-query/
7 see http://www.gracenote.com/
8 see http://www.id3.org/



For example, we can imagine the following SPARQL query that associates
an audio file and the sampling rate of the corresponding digital signal:

PREFIX mu: <http://purl.org/NET/c4dm/music.owl#>
SELECT ?a ?r WHERE {
?a rdf:type mu:AudioFile. ?a mu:encodes ?dts.
?dts rdf:type mu:DigitalSignal.
?dts mu:samplingRate ?r }

We can associate to this query the following predicate, whose first argument will
be bound to the audio file, and whose second argument will be bound to the
corresponding sampling rate:

audiofile samplingrate(AudioF ile, SamplingRate)

Now we can use this predicate in composite formulæ, perhaps to use this sam-
pling rate information as one of the inputs of an algorithm wrapped in another
predicate.

Exporting knowledge to the Semantic Web Someone working on a par-
ticular Knowledge Machine may want, at some point, to state that a particular
predicate is relevant, according to the domain ontologies hold by the knowledge
environment. This is equivalent to stating that this predicate has a particular
meaning which can be expressed using one of the vocabularies we have access
to. Thus, we want to be able to state a match between a predicate and a set
of RDF triples. Moreover, we want to express this match either in the language
of predicate calculus (in order to export new information when this predicate
holds new knowledge) and in terms of OWL/RDF to allow automatic reason-
ing (as described in § 3.4) in the Semantic Web layer. We developed a simple
ontology of semantic matching between a particular predicate and a conceptual
graph. This ontology uses the RDF reification9 mechanism in order to express
things like ‘this predicate in this Knowledge Machine is able to create these RDF
triples’. This can be seen as a limited subset of OWL-S10, where the effects of
a particular process can only consist in creating new RDF triples. For example,
the predicate soxsr, able to change the sample rate of an audio file, can create
some RDF triples, as represented in fig. 3. Thus, a Knowledge Machine can be
represented as in fig. 4.

3.3 Domain specific ontologies

In order to make this knowledge environment understandable by all its actors
(Knowledge Machines or any entities querying this environment), it needs to be
designed according to a shared understanding of the specific domains we want
to work on. An ontology can provide this common way of expressing statements
9 see http://www.w3.org/TR/rdf-mt/#Reif

10 http://www.daml.org/services/owl-s/



Fig. 3. Expressing a match between the predicate soxsr and the fact that it is able to
change the sample rate of an audio file

Fig. 4. Overall architecture of a Knowledge Machine



in a particular domain. Such ontologies will be developed in the context of music
in § 5.1. Moreover, the expressiveness of the different ontologies specifying this
environment will implicitly state how dynamic the overall framework can be.
Indeed, the semantic matching ontology defined in the previous section has an
expressiveness that directly depends on the different domain ontologies that are
known.

For example, if we write an ontology that is expressive enough in the domain
of football games and time sequences, and we have an algorithm which is able to
segment a football match video (corner, penalty, ...), we will be able to express
a conceptual match between what is done by the algorithm and a set of RDF
statements conforming to this domain ontology.

However, in order to keep the overall framework in a consistent state, de-
signing a new ontology must be done considering some points. These include
modularity [5] and ontological ‘hygiene’ as addressed by the OntoClean method-
ology [6].

3.4 Handling Semantic Web knowledge

At this point, we still need to make Semantic Web data available to both Knowl-
edge Machines and other entities wanting to make queries.

XsbOWL: creating SPARQL end-points In order to achieve this goal, we
designed a program able to create SPARQL end-points: XsbOWL (see fig. 5). It
allows SPARQL queries to be done through a simple HTTP GET request, on a
set of RDF data. Moreover, new data can be added dynamically, using an other
HTTP GET request.

Reasoning on Semantic Web data To handle reasoning on the underlying
Semantic Web data, we bound XsbOWL to an XSB Prolog engine (which is
more adapted to a large deductive database use case [7]). The latter, thanks to
the inner XSB tabling mechanism, is able to provide reasoning on the positive
entailment11 subset of OWL Full 12. XsbOWL is able to deal simultaneously
with around 100000 RDF statements and still provides a really fast reasoning
(less than 0.2 seconds per query). More scalability testing still has to be done.

Dynamically exporting knowledge to the Semantic Web We also inte-
grated a planner in this XSB engine, in order to fully use the information held by
the semantic matching ontology. This one is planning which predicate it needs to
call in which Knowledge Machine (using the remote calling mechanism described
in § 2.4) in order to reach a state of the world (the set of all RDF statements
known by the end-point) which will at least give one answer to the query (see
fig. 6). For example, if there is a Knowledge Machine somewhere that defines a
11 see http://www.w3.org/TR/owl-test/
12 see http://www.w3.org/TR/owl-ref/



Fig. 5. XsbOWL: Able to create a SPARQL end-point for multimedia applications

predicate able to locate all the segments corresponding to a penalty in a foot-
ball match, querying the end-point for a sequence showing a penalty during a
particular match should automatically use this predicate.

4 Use cases

In this section, we describe two different use cases, to give an insight of the wide
range of possibilities the proposed knowledge management framework brings.

4.1 Enhanced workspace for multimedia processing researchers

Working in a Knowledge Machine environment to develop multimedia processing
algorithm helps to create what we could call a semantic workspace. Every ob-
ject is part of the same logical structure, based on predicate calculus. Moreover,
the Knowledge Machine framework provides a brand new programming environ-
ment, aware of an open context. Therefore, while developing a new predicate, we
may access knowledge perhaps already available or newly created by an other
Knowledge Machine, and this in a completely transparent way.

While working on a multimedia feature extraction predicate, it is possible
to access the knowledge environment inside the predicate. For example, while
working on a melody extraction algorithm, we are able to state that a particular
sub-algorithm is to be used if an audio signal was created by a particular in-
strument. This could lead to the transparent use of an instrument classification
predicate exported by an other Knowledge Machine.



Fig. 6. Planning using the semantic matching ontology

4.2 End-user Information Access

Once the shared information layer holds a substantial amount of knowledge, it
can be useful for other entities (not part of the Knowledge Machines framework)
to use a SPARQL end-point. For example, an interactive graphical viewer ap-
plication (such as Sonic Visualiser13) should be able to submit simple queries to
compute some features of interests (or to retrieve previously computed ones) .

Moreover, as expressed in fig. 7, multimedia information retrieval applications
can be built on top of this shared environment, through a layer interpreting the
available knowledge. For example, if a Knowledge Machine is able to model the
textural information of a musical audio file, and if there is an interpretation
layer that is only able to compute an appropriate distance between two of these
models, an application of similarity search can easily be built on top of all of this.
We can also imagine more complex information access systems, where a large
number of features computed by different Knowledge Machines can be combined
with social networking data, all part of the shared information layer too.

5 Knowledge Management for Music Analysis

In this section, we will describe how this framework has been used for a music
information management (this is explained in greater details in [2]). We will
detail two Knowledge Machines, respectively dealing with format conversion and
segmentation.

13 see http://www.sonicvisualiser.org



Fig. 7. The Multimedia Knowledge Management and Access Stack

5.1 An ontology of music

Our ontology must cover a wide range of concepts, including non-physical entities
such as a musical opus, human agents like composers and performers, physical
events such as particular performances, informational objects like digital signals,
and time. We will focus on the two main aspects of our ontology: physical events
and time representation.

An ontology of events Music production usually involves physical events
that occur at a certain place and time and that can involve the participation of
a number of physical objects both animate and inanimate.

The event representation we have adopted is based on the token-reification
[8] approach. We consider an event occurence as a first class object or ‘token’,
acting like a hook for additional information pertaining to the event. Regard-
ing the ontological status of event tokens, we consider them as being the way
by which cognitive agents classify arbitrary regions of space-time. Our defini-
tion of an event is broad enough to include sounds (an acoustic field defined
over some space-time region), performances, compositions, and even transduc-
tion and recording to produce a digital signal. We also consider the existence of
sub-events to represent information about complex events in a structured and
non-ambiguous way. A complex event, perhaps involving many agents and in-
struments, can be broken into simpler sub-events, each of which can carry part
of the information pertaining to the complex whole. For example, a group per-
formance can be described in more detail by considering a number of parallel



AgentFactor

Product

Event
hasSubEvent

hasAgent
hasProduct

hasFactor

Agent
Instrument

Score

Sound

Performance

hasAgent

usesInstrument

hasProduct

Time

Place

time

place

Form Style

Role

Signal

Performing

Composing

Composition

Recording

PersonGroup

Opus

hasStyle
hasForm

hasProduct

hasScore

agentHasRole

hasProduct

hasMember

hasFactor

hasFactor
hasAgent

Timeline

onTimeline

hasFactor

Fig. 8. Some of the top level classes in the music ontology

sub-events, each of which representing the participation of one performer using
one musical instrument (see fig. 8 for some of the relevant classes and properties).

An ontology of time Each event can be associated with a time-point or a time
interval, which can either be given explicitly, e.g. ‘the year 1963’, or by specifying
its temporal relationship with other intervals, e.g. ‘during 1963’. Both must be
related to a timeline, continuous or discrete, representing linear pieces of time
which may be concrete—such as the one underlying a signal or an event, or more
abstract—such as the one underlying a score. Two timelines may be related,
using timeline maps. For example, an instance of this concept may represent the
link between the continuous physical time of an audio signal and the discrete
time of its digital representation.

5.2 Examples of Knowledge Machines

So far, two main Knowledge Machines are exporting knowledge to the shared
knowledge environment.



A format conversion knowledge machine The simplest one is about con-
verting the format of raw audio data. Several predicates are exported, dealing
with sample rate or bit rate conversion, and encoding. This is particularly use-
ful, as it might be used to create, during the development of another Knowledge
Machine, test sets in one particular format, or even to test the robustness of a
particular algorithm to information loss.

A segmentation knowledge machine This Knowledge Machine is able to
deal with segmentation from audio, as described in greater details in [9]. It
exports just one predicate, able to split the time interval corresponding to a
particular raw signal in several ones, corresponding to a machine-generated seg-
mentation. This Knowledge Machine was used to keep track of hundreds of
segmentations, enabling a thorough exploration of the parameter space, and re-
sulting in a database of over 30,000 tabled function evaluations. This Knowledge
Machine provides a segmentation ability on raw audio files. Along with the for-
mat conversion Knowledge Machine, it brings the ability to segment all available
audio files by using our planning component.

6 Conclusions and further work

In this paper we described a framework able to deal with information manage-
ment for multimedia analysis systems. This is built around two main compo-
nents: Knowledge Machines, enabling to wrap and work on analysis algorithms
using predicate calculus and function tabling, and a shared Semantic Web knowl-
edge environment. Knowledge Machines can interact in two different ways with
this environment. They can build an interpretation of the theory that it is hold-
ing at a given time as a set of logical predicates, thus to use them when building
compound predicates. They can also specify a match between a set of logical
predicates and a set of RDF triples, to export results to the Semantic Web
layer, or to dynamically compute new ones in order to satisfy a query.

We can think of the Knowledge Machine framework as an artificial way of
accessing concepts, which are defined by the domain ontologies held by the shared
knowledge environment. Thus, a network of Knowledge Machines can bring an
artificial and approximate cognition for multimedia related materials, against
a culture which is defined by the different ontologies. It leads to a distributed
intelligence, as mentioned in [10], and thus is similar in some ways to agent
technologies. However, it brings an artificial cognition of available multimedia
materials instead of services—getting things done.

There are several possible extensions to this framework, such as handling
trust in the Semantic Web environment. For example, we may want to express
that a computer-generated segmentation of an audio file is less accurate than a
human-generated one, and we may also want to quantify this accuracy. We could
also do a statistical analysis to judge whether or not a particular algorithm has
successfully captured a given concept, and if so, to declare a match between
a wrapping predicate and this concept so that the algorithm gains a semantic



value; subsequent queries involving this concept would then be able to invoke
that algorithm (using the planner component) even if no key annotations are
present in the shared environment. This would be an example of ‘closing the
semantic gap’.

7 Acknowledgments

The authors acknowledge the support of both the Centre For Digital Music and
the Department of Computer Science at Queen Mary University of London for
the studentship for Yves Raimond.

References

1. D. S. Weld, “Recent advances in ai planning,” AI Magazine, 1999.
2. S. Abdallah, Y. Raimond, and M. Sandler, “An ontology-based approach to in-

formation management for music analysis systems,” in Proceedings of 120th AES
convention, 2006.

3. E. F. Codd, “A relational model of data for large shared data banks,” Communi-
cations of the ACM, vol. 13, no. 6, pp. 377–387, 1970.

4. F. Baader, I. Horrocks, and U. Sattler, “Description logics as ontology languages
for the semantic web,” in Essays in Honor of Jörg Siekmann, ser. Lecture Notes
in Artificial Intelligence, D. Hutter and W. Stephan, Eds. Springer, 2003.

5. A. L. Rector, “Modularisation of domain ontologies implemented in description
logics and related formalisms including owl,” in Proceedings of the international
conference on Knowledge capture. ACM Press, 2003, pp. 121–128.

6. N. Guarino and C. Welty, “Evaluating ontological decisions with ONTOCLEAN,”
Communications of the ACM, vol. 45, no. 2, pp. 61–65, 2002.

7. K. Sagonas, T. Swift, and D. S. Warren, “XSB as an efficient deductive database
engine,” in SIGMOD ’94: Proceedings of the 1994 ACM SIGMOD international
conference on Management of data. New York, NY, USA: ACM Press, 1994, pp.
442–453.

8. M. P. Shanahan, “The event calculus explained,” in Artificial Intelligence Today,
Lecture Notes in AI no. 1600, M. J. Woolridge and M. Veloso, Eds. Springer,
1999, pp. 409–430.

9. S. Abdallah, K. Noland, M. Sandler, M. Casey, and C. Rhodes, “Theory and evalu-
ation of a bayesian music structure extractor,” in Proceedings of the Sixth Interna-
tional Conference on Music Information Retrieval, J. D. Reiss and G. A. Wiggins,
Eds., 2005, pp. 420–425.

10. J. Bryson, D. Martin, S. McIlraith, and L. Stein, “Toward behavioral intelligence
in the semantic web,” IEEE Computer, Special Issue on Web Intelligence, vol. 35,
no. 11, pp. 48–55, November 2002.


