
A Distributed Data Space for Music-Related Information

Yves Raimond, Christopher Sutton, Mark Sandler
Centre for Digital Music

Queen Mary, University of London
{yves.raimond,chris.sutton,mark.sandler}@elec.qmul.ac.uk

ABSTRACT
In this paper, we describe how some key Semantic Web tech-
nologies can be used to gather in a single distributed knowl-
edge environment several music-related sources of informa-
tion, from digital archives to feature extractors or personal
music collections. Such knowledge can then be used for a
wide range of purposes, such as aggregation and informa-
tion retrieval, visualisation and enriched access, or cross-
repository interlinking. We also describe on-going efforts
aiming at bootstrapping such a data-space, as well as pre-
liminary results.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Design

Keywords
Semantic-Web,Multimedia,Music,MIR

1. INTRODUCTION
Information management is becoming an important part

of multimedia related technologies, ranging from the man-
agement of personal collections to the construction of large
cultural archives or the storage of analysis results. Solutions
to each of these problems have emerged, such as GreenStone
[1] or Fedora [2] in the case of digital archive management,
but so far all these frameworks are isolated from each other.
This becomes a greater problem when we extend our range
of interest to other datasets, such as personal music collec-
tions, Creative Commons music repositories or automati-
cally extracted features which can reveal the inner musical
structure of a particular piece. There is no way to make one
of these datasets benefit from the knowledge another one
may hold—even between instances of the same program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MS’07, September 28, 2007, Augsburg, Bavaria, Germany.
Copyright 2007 ACM 978-1-59593-782-7/07/0009 ...$5.00.

Figure 1: Linking music-related data on the Semantic

Web

At the same time information access is tremendous on the
current web of documents, and the need for a more struc-
tured web, accessible and understandable by software agents
as well as human agents, is becoming obvious. As a result,
new languages and standards for structuring the informa-
tion available on the web have emerged, such as Microfor-
mats, RDF or OWL—Semantic Web technologies. These
technologies, when bound with other web technologies, al-
low the creation of a web of data, which defines itself in an
organic way by the inclusion of ontologies into it.

In this paper, we explain how a distributed and demo-
cratic knowledge environment based on the technologies de-
scribed in § 2 can act as a data hub for many music-related
applications and data sources, as depicted in fig. 1. In partic-
ular, we explain in § 3 how we can link together freely avail-
able music-related information repositories, digital archives
and personal music collections. In § 4, we detail how music
analysis algorithms can also take part in this web of data, in
order to try bridge the gap between Music Information Re-
trieval researchers and actual music consumers. Finally, in
§ 5, we detail further applications which illustrate the con-
siderable potential benefits of linking the data from all these
sources.

2. TOWARDS A WEB OF DATA
As mentioned in the introduction, there is great incen-

tive to make currently published information on multimedia
resources available in a common, structured, interlinked for-
mat. Tim Berners-Lee’s vision of the Semantic Web [3], and
the vast array of technologies already established in pursuit
of it, provide just the functionality required to begin build-

Figure 2: Overview of a Semantic Web user agent

ing such a “web of data”. We discuss below the component
technologies currently being used. In § 2.1 we introduce RDF
and the use of HTTP URIs to identify resources. In § 2.2
we discuss the ways such data can be usefully consumed by
various types of user agents in a trustworthy way, as men-
tioned in § 2.3. Examples of such user agents are given in
section § 2.4.

2.1 Dereferencable identifiers and machine-
readable descriptions

The W3C’s Resource Description Framework (RDF) [4]
allows the description of resources by expressing statements
about them in the form of triples: subject, predicate and
object. Each element of such a triple is specified by a URI
(Unique Resource Identifier) and a set of triples may be
interpreted as a graph of these resources, with arcs corre-
sponding to the relationships between them.

RDF alone then provides us with a common, structured
format for expressing data. Interlinking of data sets may be
achieved by ensuring URIs are unique across data sets, and
providing a common access mechanism for following refer-
ences between data sets. In practice, the existing HTTP pro-
tocol proves ideal for this task. If each resource is identified
by a HTTP URI (eg. http://example.com/resource7341),
we obtain an established system for “ownership” of URIs,
and we can traverse data sets using simple HTTP GET op-
erations.

A user agent, wishing to know more about a resource x,
dereferences the URI of x by performing a HTTP GET oper-
ation on the URI address, and receives RDF data containing
triples related to the resource, as depicted in fig. 2. This al-
lows dynamic exploration of linked data sets [5] which may
be as distributed across geographic locations, institutions
and owners as the traditional Web.

This idea of using HTTP addresses to provide machine-
readable descriptions of resources may seem at odds with the
current usage of the HTTP namespace. However there exist
various techniques (eg. specification of content-type by user
agents, content negotiation by 303 redirects, embedded (mi-
cro)formats such as RDFa) to allow the same HTTP address
to provide both machine-readable RDF data and human-
readable HTML data describing a resource. The Semantic

Web can therefore be built alongside the current web, and
a content publisher with knowledge of Semantic Web tech-
nologies can ensure his published data is useful both directly
to a human reader via a traditional web browser, and to a
Semantic Web user agent possibly performing reasoning and
deduction on behalf of a human user.

2.2 Semantic Web user agents
We use the term “user agent” to describe any software

acting directly on user requests, and a “Semantic Web user
agent” is then one which accesses resources on the Semantic
Web in order to satisfy a user’s demands. One example
of a Semantic Web user agent would be a simple browser,
analogous to a modern web browser, which allows the user
to navigate data on the Semantic Web just as a web browser
allows a user to navigate web sites.

Although we are beginning to see quite sophisticated use
of traditional web resources (such as web “scrapers” which
extract data from webpages, scripts which modify webpage
content on-the-fly 1, and“mashups”which dynamically com-
bine the functionality of multiple sites2), the traditional web
was designed solely for the “browsing” use case. The Se-
mantic Web on the other hand is designed to allow much
more complex interaction with available data sources. So
the term “Semantic Web user agent” also encompasses pro-
grams which automatically explore and dereference extra
resources in order to satisfy a user’s query.

A simple example of this is the Tabulator [6] (see § 2.4)
which automatically dereferences resources if they are se-
mantically marked “the same as” or “see also” from the re-
source the user requested information about, and then pro-
vides the user with a conflated view of all the information
found. This “automatic exploration” approach is only one
way for a user agent to exploit Semantic Web resources, and
for more complex queries or larger volumes of data other
access mechanisms (such as SPARQL [7]) may be more effi-
cient. Further examples of user agents which take advantage
of semantic information are given in § 2.4 below.

Having information about the type of each resource and
its relationships to other resources also allows a user agent to
present the data to the user in an appropriate format. This
can be done by using a display language such as Fresnel [8]
to specify how to display data from a particular ontology,
or by explicitly writing user agents to suit particular infor-
mation domains—something that is not possible with the
traditional web. Software written to suit a particular set
of ontologies and display resources and relationships from
those ontologies appropriately might also allow the inclu-
sion of newly-encountered ontologies, and (by performing
reasoning on their relationships to known ontologies) suit-
ably display resources and relationships from those ontolo-
gies also.

2.3 Confidence handling
A potentially infinite number of agents can publish infor-

mation on the Semantic Web—anyone can be a data pub-
lisher or consumer. Therefore, there is a need to implement
some sort of confidence handling at the user agent level.
The Named Graph approach [9] provides a formal frame-
work which can act as a basis for a trustworthy Semantic
Web. This relies on the fact that every piece of information

1see http://greasemonkey.mozdev.org/
2see http://www.programmableweb.com/

aggregated into a user agent has a provenance, which should
itself be modelled within the agent’s knowledge base. For
example, if a user agent aggregated two pieces of information
respectively stating that John Doe is a PhD student and
John Doe is a lecturer, it should also keep track of the
provenance of these statements. The first statement could
come from http://johndoeuniversity.edu/students/ and
the second could come from http://anotheruniversity.

edu/staff/. Then, the user agent has a way to trust one
information source more than another (in our example, to
specify that the first source is probably outdated).

2.4 Implementations
As discussed in § 2.2, we can distinguish between Semantic

Web user agents based on whether they are agnostic to the
domain of their data or designed for a particular domain,
and whether they are restricted to exploration by browsing
or can retrieve data in more sophisticated ways (such as
answering queries).

The Tabulator and the Disco - Hyperdata
Browser[10] are both generic browsers for Semantic
Web data. The Tabulator allows interactive traversal of
data (both locally stored documents, or remote HTTP
resources) with some basic reasoning (see § 2.2 above) and
can visualise selected properties in several ways, including
a table view, timeline view, and a Google map view. The
Tabulator is open source and can be extended with custom
views, allowing the possibility of adaptation to particular
information domains. Development is ongoing, and recent
work is focused on allowing the user to edit data as they
browse.

The Disco - Hyperdata Browser provides a simpler brows-
ing interface, in which the user views properties of one re-
source at a time, and all resources dereferenced are cached
in a graph for the current session. Disco takes a more proac-
tive approach than the tabulator, dereferencing every URI
mentioned in the requested URI’s properties. Like the tabu-
lator, it can perform simple merging of resource information
based on “same as” relationships.

The mSpace Classical Music Explorer[11] is a good
example of a Semantic Web user agent tailored to suit a
particular domain. Using classical music as a test case, re-
searchers have applied original ideas on user interface design
to the creation of a very flexible and easy-to-use informa-
tion browser. An important distinction between this and
the other user agents presented here is that the mSpace ex-
plorer operates primarily on a closed data set stored on the
server, rather than dynamically finding new sources of Se-
mantic Web data.

Other user agents for specific domains include the FOAF
Explorer and foafnaut for the Friend of a Friend ontology,
and the Geonames browser which lets the user explore ge-
ographical data from several large databases through inter-
active maps.

The Semantic Web Client Library[12] and SWIC[13]
are two libraries designed to allow more sophisticated modes
of use than simple browsing, by modelling the whole Seman-
tic Web as a single graph and allowing queries to be executed
on that graph. The client library explores the graph, deref-
erencing resources in order to satisfy the query.

3. A MUSIC-RELATED WEB OF DATA
In discussing music data online, we can distinguish be-

Figure 3: Describing a music production process using

the level 2 of the Music Ontology

tween data (the music itself, whether sampled (eg. MP3) or
symbolic (eg. MIDI)), and metadata (information about the
music (eg. ID3 tags, album reviews, track listings)). There
is a vast amount of musical metadata currently online, some
of it provided quite free of restrictions by an open commu-
nity (eg. the MusicBrainz database, FreeDB CD listings,
the MusicMoz directory, articles in Wikipedia) and some of
it under copyright of commercial entities (eg. the All Mu-
sic Guide, music product information on Amazon, CDDB
CD listings, and the Grove dictionary of music). There are
also considerable resources for music data. Generally music
data is available for sale rather than free download (eg. the
iTunes Music Store), but there are also free audio data re-
sources available (eg. from the Jamendo and the Magnatune
labels).

For the most part these resources all exist in isolation, de-
spite providing similar kinds of information. In most cases,
interlinking between these resources would be of benefit to
all concerned, but instead each data source uses its own
identifiers, data formats and APIs. This necessitates the
writing of “glue code” to combine data sources (for exam-
ple a mash-up which uses your Last.FM listening profile to
plot your recently-heard artists on a map), and new code
must be written for each desired combination. If this data
were integrated into the web rather than just being acces-
sible through particular web pages, such “glue code” would
be unnecessary, and a generic user interface could allow ar-
bitrary reuse and combination of data. Some efforts in this
direction are discussed below.

3.1 Overview of the Music Ontology
Integration and interlinking of data sources is possible

even when they don’t share a common ontology, but far eas-
ier when they do. The Music Ontology [14] has been created
to provide a standard base ontology for describing musical
information. It can currently describe a wide range of music
information at three distinct levels of detail— Level 1 de-
scribes top-level editorial information such as is found in an
ID3 tag; Level 2 describes the process behind the produc-

tion of music, whether in the studio, on a home PC, or in
concert; Level 3 allows low-level description of the structure
and component events of the music being played, such as
the notes, chords, or samples being played. A depiction of
the main concepts in level 2 can be found in fig. 3.

The Music Ontology builds on existing ontologies, most
notably Functional Requirements for Bibliographic Records
[15], the Timeline [16] and Event [17] ontologies, and the
Friend-of-a-Friend [18] ontology. No one ontology could
hope to cover the requirements of all music descriptions, and
so the Music Ontology is designed to allow extension with
specialised ontologies. For example, the ontology itself pro-
vides only very basic instrument and genre terms, but has
been extended by using the SKOS adaptation of the Mu-
sicBrainz instrument taxonomy [19], and the DBpedia [20]
adaptation of Wikipedia’s genre taxonomy.

The following listing shows an example description (in
Turtle notation [21], which will be used throughout all the
RDF examples in the paper) of a music track using the Mu-
sic Ontology, which is represented graphically in fig. 4.

@prefix : <http://example.org/joco_info/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix mo: <http://purl.org/ontology/mo/> .
@prefix event: <http://purl.org/NET/c4dm/event.owl#> .
@prefix time: <http://www.w3.org/2006/time#> .
@prefix timeline: <http://purl.org/NET/c4dm/timeline.owl#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix yago: <http://dbpedia.org/class/yago/> .
@prefix geo: <http://www.geonames.org/ontology> .

########################### Level 1 ####################################
:joco

rdfs:type mo:MusicArtist ;
rdfs:label "Jonathan Coulton" ;
owl:sameAs

<http://zitgist.com/music/artist/d8df7087-06d5-4545-9024-831bb8558ad1>.

:rit_surr_sound
rdfs:type mo:MusicGroup ;
foaf:name "RIT’s Surround Sound" ;
foaf:homepage "http://www.ritsurroundsound.org/" .

:taw3
rdfs:type mo:Record ;
rdfs:label "Thing a Week III" ;
mo:has_track :c_m_album_version ;
owl:sameAs

<http://zitgist.com/music/record/ba027f50-90a8-4e36-9f95-871d66978ffa>.

:code_monkey
rdfs:type mo:MusicalWork ;
dc:title "Code Monkey" .

:c_m_album_track
rdfs:type mo:Track ;
dc:title "Code Monkey" ;
dc:creator :joco ;
owl:sameAs

<http://zitgist.com/music/track/ba236f3d-1f21-406b-9870-3d33422c1509>;
mo:freeDownload

<http://www.jonathancoulton.com/music/thingaweek/CodeMonkey.mp3>.
########################### Level 2 ####################################
:c_m_comp

rdfs:type mo:Composition ;
rdfs:label "Composition of Code Monkey (Thing a Week 29)";
event:hasAgent :joco ;
event:hasProduct :code_monkey ;
event:time

<http://placetime.com/interval/gregorian/2006-04-10T00:00:00Z/P5D> .

Album performance
:c_m_album_perf

rdfs:type mo:Performance ;
mo:usesWork :code_monkey ;
mo:performer :joco ;
event:time

<http://placetime.com/interval/gregorian/2006-04-10T00:00:00Z/P5D> ;
mo:producesSound :c_m_album_sound .

:c_m_album_sound
rdfs:type mo:Sound ;
mo:usedInRecording :c_m_album_recording ;
mo:usedInRecording :c_m_remix .

:c_m_album_recording
rdfs:type mo:Recording ;
mo:producesSignal :c_m_album_signal .

:c_m_album_signal
rdfs:type mo:Signal ;
mo:publishedAs :c_m_album_track .

Live performance
:c_m_live_perf

rdfs:type mo:Performance ;
rdfs:label "Performance of Code Monkey (video available)";
event:hasAgent :joco ;
event:usesWork :code_monkey ;
event:place :TempleBar ;
mo:availableAs <http://www.youtube.com/watch?v=j4TnhemCEmc> .

:TempleBar
rdfs:type yago:venue ;

Figure 4: Depiction of a description using the Music

Ontology

foaf:name "Temple Bar, Santa Monica, CA" ;
geo:locatedIn <http://sws.geonames.org/5393212/> .

A Cappella arrangement & live performance
:c_m_acappella_arr

rdfs:type mo:Arrangement ;
rdfs:label "A Cappella arrangement of Code Monkey" ;
event:hasFactor :code_monkey ;
foaf:Agent :rit_surr_sound .

:c_m_acappella_perf
rdfs:type mo:Performance ;
rdfs:label "A Cappella Code Monkey Performance (video avail.)";
foaf:Agent :rit_surr_sound ;
event:hasFactor :c_m_acappella_arr ;
mo:availableAs <http://www.youtube.com/watch?v=vsKBQLz8yrI> .

"Speed Monkey" remix
:c_m_remix_signal

rdfs:type mo:Signal ;
mo:remix_of :c_m_album_signal ;
mo:availableAs :c_m_remix .

:c_m_remix
rdfs:type mo:Track ;
dc:title "Speed Monkey" ;
mo:releaseType mo:remix ;
foaf:homepage <http://art.twobrotherssoftware.com/speedmonkey.html>;
mo:freeDownload

<http://www.art.twobrotherssoftware.com/music/speedmonkey.mp3>.

3.2 Linking music-related open-data
The open data movement aims at making data freely avail-

able to everyone. Such data sources cover a wide range of
topics: from music (Musicbrainz, Magnatune or Jamendo)
to encyclopedic information (Wikipedia) or bibliographic in-
formation (Wikibooks, DBLP bibliography). The “Linking
Open Data on the Semantic Web” community project [22]
aims at interlinking such sources of information, using the
technologies described in § 2.1. For example, if we provide a
description of a particular artist, we may want to, instead of
providing a complete geographic information by ourselves,
just link the artist resource to a location in the Geonames
dataset, which provides additional knowledge about this lo-

cation, such as hierarchical relationships with other geo-
graphical entities, latitude, longitude, etc. Then an agent
crawling the Semantic Web can jump from our knowledge
base to the Geonames one by following this link.

This interlinking process comes in two steps. First, the
data sources must be wrapped in order to provide identi-
fiers for the resources they hold, and be able to provide RDF
descriptions of these resources on demand. Then, links be-
tween datasets can be created.

The Music Ontology described in § 3.1 helps this process
for music-related information. It provides a framework for
publishing heterogeneous music-related content in RDF—
from MusicBrainz to the Royal Scottish Academy for Mu-
sic and Drama (RSAMD) HotBed database. Moreover, it
provides links to other ontologies, covering other domains,
such as reviews [23], social networking information [18], geo-
graphic information [24] or acoustic information [25] related
to the music data itself.

Several music-related datasets have already been made
available. The Jamendo and the Magnatune Creative Com-
mons music collections have been made available as linked
data [26], using P2R [27] and UriSpace [28]. P2R pro-
vides SPARQL access to SWI-Prolog [29] knowledge bases,
according to a declarative mapping3. UriSpace provides
content negotiation on identifiers whose description lies in a
SPARQL end-point. Therefore, it is able to provide a RDF
representation to Semantic Web user agents, and a HTML
one to web browsers. The Musicbrainz dataset, holding de-
tailed editorial information about more than 300 000 artists,
has also been made available [30] through the use of the
OpenLink Virtuoso [31] SQL to RDF mapper.

These datasets also hold links to other datasets. For ex-
ample, many resources representing artists, records or tracks
in the Jamendo and the Magnatune datasets are declared
as being the same as corresponding resources in the Mu-
sicbrainz dataset (through the owl:sameAs property). These
links were created automatically using a variant of the Sim-
ilarity Flooding algorithm by Melnik et al. [32], working
in a linked data environment. Moreover, when a descrip-
tion of an artist in the Jamendo dataset is requested, a
call to the Geonames web service is done in order to find
if there is a matching geographic location corresponding to
the simple literal (such as “Paris, France”) available in the
Jamendo database. If we succeed in finding a matching lo-
cation, we add a statement to our artist description making
the link from the Jamendo dataset to the Geonames one (us-
ing the foaf:based_ near predicate), thereby allowing user
agents to access detailed information about the location of
the artist. The RSAMD HotBed database was also pub-
lished [33], and is currently being linked to the Geonames
dataset.

3.3 Management of personal music collec-
tions

Personal music collections can also be a part of such a web
of data. The Music Ontology makes the same distinction
as FRBR between manifestations (all physical objects that
bear the same characteristics—a particular record, for exam-
ple) and items (a concrete entity, such as a particular CD or
a particular audio file). A manifestation and a correspond-
ing item are linked through a predicate mo:availableAs.

3such a mapping can be found at http://moustaki.org/
resources/jamendo_match.pl

Therefore, given a set of audio files in a personal music col-
lection, it is possible to keep track of the set of statements
linking this collection to identifiers denoting the correspond-
ing manifestations available elsewhere in the Semantic Web.
These statements provide a set of entry points to the Se-
mantic Web, allowing one to access information such as the
birth date of the artists responsible for some of the items
in the collection, geographical locations of the recordings,
etc. GNAT4 is an automatic linking implementation, from
a personal audio collection to the Musicbrainz dataset—it
uses available ID3 tags (which can themselves be set cor-
rectly using an automatic tagging application using acous-
tic fingerprint information, such as Picard5) to find corre-
sponding dereferencable identifiers, and then outputs RDF
statements making the links between local audio files and
the remote manifestation identifiers. This could be used
to build small applications to enhance the user experience:
for example, placing the audio collection on a timeline and
allowing the generation of playlists holding only songs com-
posed during a particular decade, placing the collection on
a map and allowing the user to create playlists going from
one place to another, etc.

3.4 Digital archives interlinking
As mentioned in the introduction, instances of digital

archive management software (such as Greenstone [1]) are
often isolated from each other, even though they could really
benefit from interlinking the knowledge they hold. For ex-
ample, a composer described in one archive could be linked
to some musical works described in another archive. The
BRICKS [34] and EASAIER [35] projects both try to over-
come these limitations, and make several archives aware of
each other and of external datasets.

The range of links that it is possible to create in a Seman-
tic Web environment is not bound to range over a particular
type of application: an open dataset, a personal music col-
lection and a digital archive can be linked together— the
Semantic Web therefore acts as a data hub.

Taking benefit from the Semantic Web can be done in
two steps. The archive management software should first
implement a component that is able to provide access to
the information it holds using dereferencable identifiers and
RDF. Then, links from one archive to another dataset (which
may be another archive exposing data in the same way, open
datasets, etc.) can be created either automatically (as men-
tioned in § 3.2) or manually.

For example, an ethnomusicological archive may take ben-
efit from being linked to a geographical dataset such as
Geonames. In this way, the archive can be tightly focused on
its primary topic, and leave the burden of extra descriptions
to other focused datasets.

4. DYNAMIC RESOURCES
So far we have discussed only static resources—data is

stored somewhere, and looked up when requested. How-
ever, the Semantic Web interface can also be used to access
dynamic resources which are computed only when requested
(and possibly then cached for future requests). In the mu-
sic realm, this means that current research algorithms (for

4the code is available at http://moustaki.org/resources/
gnat.tar.gz
5see http://musicbrainz.org/doc/PicardTagger

example the ones mentioned in [36]) for tempo and rhythm
estimation, harmonic analysis (such as chord transcription),
partial transcription, or source separation could be exposed
as Semantic Web resources. This could be of great bene-
fit both to researchers, allowing them to more easily com-
pare their results with others’ algorithms, and to the general
public by letting them use research algorithms without re-
searchers needing to design end-user applications. We detail
in this section some steps in this direction.

In order to export the results of our music analysis algo-
rithms dynamically to this distributed data space, we need
to create placeholder dereferencable resources which, when
accessed, trigger a computation to generate a RDF descrip-
tion or look for cached results. Moreover, we want every
Semantic Web user agent to be able to access these results
without any knowledge of the underlying framework: these
placeholder resources must be part of the ones the user agent
would have dereferenced if the actual results were already
available in the web. We now detail an encapsulation strat-
egy which meets this requirement.

4.1 Modelling music analysis algorithms
First, we consider every analysis algorithm as a predicate,

associated to a particular mode and determinism. For ex-
ample, we would express a trained instrument classifier as
in (1) or an algorithm computing a feature-based similarity
between two audio signals as in (2)6.

instrument_recognition(+Signal,-Instrument)
is semi-deterministic. (1)

similarity(+Signal1,+Signal2,-Distance)
is deterministic. (2)

When queried in the right mode (with all the input ar-
guments bound), a computation will be launched, and the
output arguments will be associated with the corresponding
results, otherwise, the predicate will be false. Input argu-
ments can be bound using either local content databases,
associated to remote identifiers through a process similar
as the one described in § 3.3, or access to aggregated Se-
mantic Web data (through the Jamendo or the Magnatune
SPARQL end-points, for example).

4.2 RDF view of music analysis algorithms
Then, we consider the following axioms7, dealing with

the RDF representation of the algorithms mentioned ear-
lier. The predicate signal looks for an available signal URI
(whose sample values will be parsed as an array of numbers
inside the analysis predicates if the actual signal is avail-
able), either in a local database, or in aggregated Semantic
Web data. The predicate threshold is true if its argument
is superior to a fixed value. The predicate rdf is true if the
three arguments constitute a RDF statement.

rdf(Signal, mo : instrument, Instrument) ⇐
signal(Signal)

∧ instrument recognition(Signal, Instrument)

6+ denotes an input argument, - an output one, the is op-
erator here associates a mode declaration to a particular
determinism class, and we use the Prolog lexical convention
for distinguishing variables from constants—variables start
with an uppercase character
7we just use the following operators: ∧ (and) and ⇐ (if)

rdf(Signal1, mo : similar to, Signal2) ⇐
signal(Signal1) ∧ signal(Signal2)

∧ similarity(Signal1, Signal2, Distance)

∧ threshold(Distance)

Now, if we put a SPARQL end-point on top of such en-
tailment rules, a DESCRIBE query on any accessible sig-
nal will dynamically derive statements holding information
about the musical instrument used and about similar sig-
nals. This behaviour in fact raises a problem: computations
may be resource-intensive, so we do not want to compute
things that the user agent is not interested in. We there-
fore need a more sophisticated dynamic resource handling
mechanism.

4.3 Advertising dynamic resources
We consider just deriving, at first, advertisement state-

ments from such entailment rules, which will provide only
enough data for the user agent to reach a resource that,
when dereferenced, will trigger a unique class of computa-
tions. For example, a SPARQL end-point providing such a
mechanism on top of the two rules defined earlier will issue
just two statements, when a DESCRIBE query is done on
an accessible signal ex:signal:

@prefix ex: <http://example.org/>.
@prefix mo: <http://purl.org/ontology/mo/>.
@prefix : <>.

ex:signal mo:instrument :fake1.
ex:signal mo:similar_to :fake2.

Then, when a DESCRIBE query is issued on :fake1, the
first entailment rule is derived in order to find the actual
relationship between the signal and an instrument, and we
append the corresponding statement to the returned descrip-
tion. In order to make it totally transparent for the client, we
also state that :fake1 is the same as the matching output.
Many user agents know how to interpret a owl:sameAs state-
ment, and so in practice that statement alone would suffice
to relate the signal to the instrument. However, we try here
to accommodate a large range of possible user agents, in-
cluding those with no reasoning support. This leads us to
the following RDF document, accessed when issuing a DE-
SCRIBE query on :fake1:

@prefix ex: <http://example.org/>.
@prefix mo: <http://purl.org/ontology/mo/>.
@prefix mit: <http://purl.org/ontology/mo/mit#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <>.

:fake1 owl:sameAs mit:Contrabassoon.
ex:signal mo:instrument mit:Contrabassoon.

When a DESCRIBE query on :fake2 is issued, the fol-
lowing query is considered:

signal(ex : signal) ∧ signal(Signal2)

∧ similarity(ex : signal, Signal2, Distance)

∧ threshold(Distance)

This query is clearly multi-solution (zero or multiple
matching bindings): we derive a distance measure from

ex:signal to each other accessible signal, and threshold
them against a fixed value. Therefore, we must derive all
the possible outputs (ie. consider all possible similar audio
signals) and send back the following document:

@prefix ex: <http://example.org/>.
@prefix mo: <http://purl.org/ontology/mo/>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <>.

:fake1 owl:sameAs ex:signal2.
:signal mo:similar_to ex:signal2.
:signal mo:similar_to ex:signal3.
[...]

The :fake1 resource is stated as being the same as one of
the similar signals.

Using such a mechanism, only the computation that the
user agent is interested in will be triggered. If the user agent
looks for an instrument associated to a signal, it will just
trigger a call to instrument_recognition. If it looks for
similar signals, it will trigger a call to similarity.

Then, we consider tabling of predicates such as sim-

ilarity or instrument_recognition: we cache every
computed instantiation of them, in order to save us
from performing the same computation twice through two
similar queries. For example, when an evaluation of
similarity(signal1, Signal, Distance) leads to a set of facts
similarity(signal1, signaln, distancen), we store these facts
in order to directly retrieve them when similar queries are
evaluated.

4.4 Publishing results in the Semantic Web
After embedding the described mechanism in a SPARQL

end-point, we just need to map the identifiers we use to
DESCRIBE queries onto the end-point, therefore making
them dereferencable and part of the Semantic Web. A user
agent interacting with such identifiers will only launch the
computations that exactly fit his request.

Now, we can annotate the RDF documents dynamically
generated in such a framework. This can hold various in-
formation, such as the computation time taken, a link to
the DOAP [37] URI of the program which generated the ac-
tual results, an associated confidence, etc. For example, the
RDF document retrieved when dereferencing :fake1 could
look like:

@prefix ex: <http://example.org/>.
@prefix mo: <http://purl.org/ontology/mo/>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix : <>.

ex:signal mo:instrument :fake1.
ex:signal mo:similar_to :fake2.

<> foaf:maker ex:my_instrument_classifier_project;
ex:computationTime "PT3.12S"^^xsd:duration;
ex:cachedResult "true"^^xsd:boolean;
ex:confidence "0.7"^^xsd:float;
.

4.5 Stacked interpretations
This mechanism allows us to provide dynamic access to a

variety of features, from low-level (eg. onsets occuring on a
signal timeline) to high-level (eg. overall tempo, or recog-
nised instruments). Since only advertisement statements are
provided in the description of the resource of interest, this

approach avoids flooding the user agent with feature data
which is of a different nature, or different level of abstrac-
tion than the user agent is interested in, while still providing
access to an arbitrarly large, dynamic, distributed dataset.

For example, in the case of an onset detection algorithm,
the signal resource, when fetched, will provide the following
representation:

@prefix mo: <http://purl.org/ontology/mo/>.
@prefix af: <http://purl.org/ontology/af/>.
@prefix event: <http://purl.org/NET/c4dm/event.owl#>.
@prefix tl: <http://purl.org/NET/c4dm/timeline.owl#>.
@prefix ex: <http://example.org/>.
@prefix : <>.

<> mo:signalTime [
tl:onTimeLine ex:timeline;
].

:fake_onset a af:Onset;
event:time [

tl:onTimeLine ex:timeline;
];

.

Then, a user agent which is interested in such low level fea-
tures can access this :fake_onset resource, receiving a large
set of onset events occuring on the timeline of the resource
we are interested in. This data set can also be distributed,
using links such as rdfs:seeAlso.

A user agent consuming such a resource might simply be
a browser or visualiser of some kind, but could instead be
a computation resource itself, accessing such features in or-
der to derive higher-order knowledge and link it with avail-
able resources. In this particular example, the information
output by the onset detector could be used by a tempo de-
tection algorithm. Such an agent would then provide an
additional advertisement statement indicating that it can
provide a tempo event for this particular timeline:

@prefix mo: <http://purl.org/ontology/mo/>.
@prefix af: <http://purl.org/ontology/af/>.
@prefix event: <http://purl.org/NET/c4dm/event.owl#>.
@prefix tl: <http://purl.org/NET/c4dm/timeline.owl#>.
@prefix ex: <http://example.org/>.
@prefix : <>.

:fake_tempo a af:TempoEvent;
event:time [

tl:onTimeLine ex:timeline;
];

.

When :fake_tempo is dereferenced, the tempo detection
agent will dereference :fake_onset in order to analyse the
available onsets, and then send back a tempo value with time
stamps delimiting an interval on which this tempo value was
computed.

In this way the proposed framework provides a way to
collaboratively stack interpretations.

4.6 Implementation
Audio features extracted by the playlist creation tool

SoundBite8 were used to implement a service augmenting
Musicbrainz track information with links to similar-
sounding tracks, using the similar_to relation from the

8see http://isophonics.net/SoundBite

Music Ontology. When a signal resource is retrieved
from this service, it is marked as being the sameAs the
corresponding Musicbrainz resource (which provides the
standard textual metadata for the track), and a single
similar_to link is provided. When this advertisement
resource is dereferenced, the actual calculation is per-
formed, and the set of links to similar tracks returned.
Continuing with the example in § 3.1, dereferencing the
URI http://isophonics.net/music/signal/ba236f3d-

1f21-406b-9870-3d33422c1509 retrieves an ad-
vertisement for tracks similar to Code Mon-
key and when this advertisement resource
http://isophonics.net/SBSimilarity/ba236f3d-1f21-

406b-9870-3d33422c1509 is dereferenced, triples describing
tracks similar to Code Monkey are obtained.

The proposed mechanism has also been implemented
within the Knowledge Machine framework ([38] gives
an overview of this framework, but does not explain the
mechanism used for dynamic computation and interlink-
ing of results), through the use of a SWI-Prolog meta-
interpreter handling mode and determinism declaration, as
well as function tabling. Access to remotely accessible data
is done through SWIC, a small Semantic Web client. On
top of it sits a component implementing the above detailed
mechanism—it provides a linked data access to fake re-
sources, which actually reflect possible computations. We
plan to integrate this functionality into P2R, in order to
provide a simple access to such functionalities.

As discussed in § 2.4, development of domain-specific se-
mantic web user agents has yet to flourish, and so there are
no existing user applications with which to consume this
data in a more complex fashion than simply browsing. It
is difficult therefore to directly evaluate the proposed ap-
proach to making data and computation available online, as
the main benefit is expected to be in interoperability and
ease of client development. However the very fact that a
generic browser can make use of the resources published in
this fashion is a significant departure from the traditional
web service and Service Oriented Architecture approaches
[39], and some directions for future work in developing more
sophisticated music-specific clients is discussed in § 5 below.

5. CONCLUSION AND FURTHER WORK
The current music-related web of data, as detailed in § 3.2,

mainly holds knowledge coming from open-data reposito-
ries, such as Musicbrainz, Creative Commons labels, and
Wikipedia. A wide range of tools allow us to wrap exist-
ing information and to provide Semantic Web access to it.
Among them, we can cite D2R or OpenLink Virtuoso for
mapping relational databases to RDF published in a linked
data way, and P2R for wrapping a Prolog knowledge-base
(which itself may wrap computational tools, calls to web
services or queries to relational databases). Moreover, sev-
eral linking tools are also available, such as GNAT, link-
ing personal music collections to corresponding identifiers in
the Musicbrainz dataset, or ldmapper, finding similar re-
sources in two datasets available as linked data. Moreover,
we detailed in this paper how the Semantic Web can also
act as a data hub for dynamically computed acoustic fea-
tures and interpretations of them, potentially allowing us to
bridge the Semantic Gap in a collaborative fashion.

Further work includes the creation of concept-specific data
visualisers, allowing us to map particular concepts available

on the Semantic Web to a relevant visualisation. For ex-
ample, we might create a user interface similar to the Sonic
Visualiser [40] which could display data available on the Se-
mantic Web—this could allow the visualisation of features
created according to the mechanism described in § 4. More-
over, end users (digital music consumers) could really benefit
from having digital jukebox software which accesses this web
of data—not only to provide more information on the avail-
able audio items, but also to interpret computable features,
enabling new modes of interaction with music. For example,
such data could be used for song browsing at the structural
level (chorus, verse, etc. or key changes) or playlist gen-
eration according to some criteria (such as key, rhythm or
melody, but also geographic or temporal information). Dig-
ital jukeboxes could also contribute new information to this
web of data, through embedded analysis algorithms which
post their results to a Semantic Web proxy.

6. ACKNOWLEDGEMENTS
The authors acknowledge the support of both the Cen-

tre For Digital Music and the Department of Computer
Science at Queen Mary University of London for the stu-
dentship for Yves Raimond. This work has been partially
supported by the EPSRC-funded ICT project OMRAS-2
(EP/E017614/1), and by the European Community 6th
Framework Programme project EASAIER (IST-033902).

7. REFERENCES
[1] “Greenstone digital library software.” [Online].

Available: http://www.greenstone.org/

[2] “Fedora digital object repository system.” [Online].
Available: http://www.fedora.info/

[3] T. Berners-Lee, J. Handler, and O. Lassila, “The
semantic web,” Scientific American, 2001.

[4] O. Lassila and R. Swick, “Resource description
framework (RDF) model and syntax specification,”
1998. [Online]. Available:
citeseer.ist.psu.edu/article/lassila98resource.html

[5] T. Berners-Lee, “Linked data,” World wide web design
issues, July 2006. [Online]. Available:
http://www.w3.org/DesignIssues/LinkedData.html

[6] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly,
R. Dhanaraj, J. Hollenbach, A. Lerer, and D. Sheets,
“Tabulator: Exploring and analyzing linked data on
the semantic web,” in Proceedings of the 3rd
International Semantic Web User Interaction
Workshop, 2006. [Online]. Available:
http://swui.semanticweb.org/swui06/papers/
Berners-Lee/Berners-Lee.pdf

[7] E. Prud’hommeaux and A. Seaborne, “SPARQL query
language for RDF,” 2005. [Online]. Available:
http://www.w3.org/TR/rdf-sparql-query/

[8] “Fresnel.” [Online]. Available:
http://simile.mit.edu/wiki/Fresnel

[9] J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler,
“Named graphs, provenance and trust,” in Proceedings
of the 14th international conference on World Wide
Web, vol. Semantic Web foundations. Chiba, Japan:
ACM Press, 2005, pp. 613–622.

[10] “Disco.” [Online]. Available:
http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/disco/

[11] “mspace.” [Online]. Available:
http://www.mspace.fm/

[12] “Semantic web client library.” [Online]. Available:
http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/
semwebclient/

[13] “Swi-prolog semantic web client.” [Online]. Available:
http://moustaki.org/swic/

[14] Y. Raimond, S. Abdallah, M. Sandler, and F. Giasson,
“The music ontology,” in To appear in the proceedings
of the International Conference on Music Information
Retrieval, 2007.

[15] I. Davis and R. Newman, “Expression of core frbr
concepts in rdf,” Working draft, 2005. [Online].
Available: http://vocab.org/frbr/core

[16] Y. Raimond and S. A. Abdallah, “The timeline
ontology,” OWL-DL ontology, 2006. [Online].
Available: http://purl.org/NET/c4dm/timeline.owl

[17] ——, “The event ontology,” OWL-DL ontology, 2006.
[Online]. Available:
http://purl.org/NET/c4dm/event.owl

[18] D. Brickley and L. Miller, “Foaf vocabulary
specification,” Working draft, 2005. [Online].
Available: http://xmlns.com/foaf/0.1/

[19] I. Herman, “Musicbrainz instrument taxonomy in
skos,” Working draft, 2007. [Online]. Available:
http://purl.org/ontology/mo/mit/

[20] “Dbpedia.” [Online]. Available: http://dbpedia.org/

[21] D. Beckett, “Turtle - terse rdf triple language,”
Working draft, 2006. [Online]. Available:
http://www.dajobe.org/2004/01/turtle/

[22] “Linking open data on the semantic web.” [Online].
Available: http://linkeddata.org/

[23] D. Ayers, “Review vocabulary,” Working draft.
[Online]. Available: http://purl.org/stuff/rev#

[24] “Geonames.” [Online]. Available:
http://geonames.org/

[25] Y. Raimond, “The musical features ontology,” Working
draft, February 2007. [Online]. Available:
http://purl.org/ontology/mo/mf/

[26] “Dbtune.” [Online]. Available: http://dbtune.org/doc/

[27] “Prolog-to-rdf.” [Online]. Available:
http://moustaki.org/p2r/

[28] “Urispace.” [Online]. Available:
http://moustaki.org/urispace/

[29] J. Wielemaker, “An overview of the swi-prolog
programming environment,” 2003.

[30] “Zitgist.” [Online]. Available: http://www.zitgist.com

[31] “Openlink virtuoso.” [Online]. Available:
http://www.openlinksw.com/virtuoso/

[32] S. Melnik, H. Garcia-Molina, and E. Rahm,
“Similarity flooding: A versatile graph matching
algorithm,” Stanford University, University of Leipzig,
Tech. Rep., 2001.

[33] “Hotbed in rdf.” [Online]. Available:
http://dbtune.org/hotbed/

[34] “The bricks community.” [Online]. Available:
http://www.brickscommunity.org/

[35] “Enabling access to sound archives through
enrichment and retrieval.” [Online]. Available:
http://www.easaier.org/

[36] P. Herrera, J. Bello, G. Widmer, M. Sandler,

O. Celma, F. Vignoli, E. Pampalk, P. Cano, S. Pauws,
and X. Serra, “Simac: Semantic interaction with music
audio contents,” in Proceedings of the 2nd European
Workshop on the Integration of Knowledge, Semantic
and Digital Media Technologies, 2005.

[37] “Description of a project.” [Online]. Available:
http://usefulinc.com/doap/

[38] Y. Raimond, S. Abdallah, M. Sandler, and M. Lalmas,
“A scalable framework for multimedia knowledge
management,” in Proceedings of the 1st conference on
Semantic and Digital Media Technologies, ser. Lecture
Notes in Computer Science, Springer, Ed., December
2006.

[39] D. McEnnis, C. McKay, and I. Fujinaga, “Overview of
omen,” in Proceedings of the International Conference
on Music Information Retrieval, 2006.

[40] C. Cannam, C. Landone, M. Sandler, and J. P. Bello,
“The sonic visualiser: A visualisation platform for
semantic descriptors from musical signals,” in
Proceedings of the International Conference on Music
Information Retrieval, 2006.

