
Audio Engineering Society

Convention Paper
Presented at the 120th Convention
2006 May 20–23 Paris, France

This convention paper has been reproduced from the author’s advance manuscript, without editing, corrections, or
consideration by the Review Board. The AES takes no responsibility for the contents. Additional papers may be

obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York
10165-2520, USA; also see www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof, is
not permitted without direct permission from the Journal of the Audio Engineering Society.

An ontology-based approach to information
management for music analysis systems

Samer A. Abdallah 1 and Yves Raimond 1 and Mark Sandler 1

1Centre for Digital Music, Queen Mary, University of London

Correspondence should be addressed to Yves Raimond (yves.raimond@elec.qmul.ac.uk)

ABSTRACT
We describe an information management system which addresses the needs of music analysis projects, pro-
viding a logic-based knowledge representation scheme for the many types of object in the domains of music
and signal processing, including musical works and scores, performance events, human agents, signals, anal-
ysis functions, and analysis results. The system is implemented using logic-programming and semantic web
technologies, and provides a shareable resource for use in a laboratory environment. The whole is driven
from a Prolog command line, where the use of Matlab as a computational engine enables experiments to be
designed and run with the results being automatically stored and indexed into the information structure.
We present as a case-study an experiment in automatic music segmentation.

1. INTRODUCTION
Information management and retrieval systems are
becoming an increasingly important part of many
music related technologies, ranging from the man-
agement of personal music collections (e.g. with
ID3 tags or in an iTunes database), through to the
construction of large ‘semantic’ databases intended
to support complex queries, involving concepts like
mood and genre as well as lower-level or textual at-
tributes like tempo and composer. In parallel with
this, the development of systems to automate the
analysis of music—perhaps in order to populate a
semantic database—depends on the availability of

annotated music databases, both as a ready source
of test data in the initial development phase, and
to support systematic evaluations of the analysis al-
gorithms. The resulting computational systems will
often produce a large amount of intermediate data;
in any case, the combined multiplicities of source
signals, alternate computational strategies, and free
parameters will very quickly generate a large result-
set with its own information management problems.

In this paper, we describe a system which repre-
sents, manages and retrieves all of these different
types of information in a unified structure, using the
language of first-order predicate calculus, in terms



Abdallah et al. An ontology-based approach to information management for music analysis systems

of which we define a collection of predicates de-
signed according to a formalised ontology covering
both music production and computational analysis.
By integrating these different facets within the same
logical framework, we facilitate the design and exe-
cution of experiments, such as exploration of func-
tion parameter spaces, the forming of connections
between given ‘semantic’ annotations and computed
data, and even mundane tasks like producing anno-
tated figures presenting the results of an experiment.

The paper is organised as follows: the motivation be-
hind using logic for knowledge representation is dis-
cussed in section 2; the terminology of predicate cal-
culus is reviewed in section 3; the components of the
ontology and some implementation details are de-
scribed in sections 4 and 5. In section 6, we present
as a case-study an experiment that was managed
using the system, and conclude in section 7.

2. KNOWLEDGE REPRESENTATION FOR
SIGNAL ANALYSIS

Consider the following scenario: we have a collection
of raw data in the form of recorded signals, e.g., au-
dio or video data. We also have information about
the physical circumstances surrounding the record-
ing of each signal, such the time and place, the equip-
ment used, the people involved, descriptions of the
events depicted in the signals, and so on. Our first
task is to represent this ‘circumstantial’ information
in a flexible and general way.

2.1. The ‘metadata’ approach

One option is to ‘tag’ each piece of primary data with
further data, commonly termed ‘metadata’, pertain-
ing to its creation. For example, CDDB associates
textual data with a CD, while ID3 tags allow in-
formation to be attached to an MP3 file. The dif-
ficulty with this approach is the implicit hierarchy
of data and metadata. The problem becomes acute
if the metadata (eg the artist) has its own ‘meta-
metadata’ (such as a date of birth); if two songs are
by the same artist, a purely hierarchical data struc-
ture cannot ensure that the ‘meta-metadata’ for each
instance of an artist agree. The obvious solution is
to keep a separate list of artists and their details, to
which the song metadata now refers. The further

we go in this direction, creating new first-class enti-
ties for people, songs, albums, record labels etc., the
more we approach a fully relational data structure.

2.2. The dictionary approach
Now consider a scenario where, as well as collection
of signals, we also have a number algorithms we can
apply to the signals in order to compute features
of interest. The algorithms may be modular and
share intermediate steps, such as the computation
of a spectrogram or the fitting of a hidden Markov
model, and they may also have a number of free
parameters.
The data resulting from these computations is of-
ten managed as a dictionary of key-value pairs—
this may take form of named variables in a Matlab
workspace, files in a directory, or files in a direc-
tory tree. This can lead to a situation in which,
after a Matlab session for example, one is left with
a workspace full of objects but no idea how each
one was computed, other than, perhaps, clues in the
form of the variable names one has chosen. The
semantic content of these data, such as it is, is inti-
mately tied to knowledge about which function com-
puted which result using what parameters, and so
one might attempt to ameliorate the problem by us-
ing increasingly elaborate naming schemes, encoding
information about the functions and parameters into
the keys, but once again, this is but a step towards
a relational structure where such information can be
represented explicitly and in a consistent way.

2.3. Relational and logical data models

Both of the scenarios mentioned above point to a
relational data model [1], where different relations
are used to model the connections between signals,
‘upstream’ circumstantial data, and ‘downstream’
derived data. Tuples in these relations represent
propositions such as ‘this signal is a recording of this
song at this sampling rate’, or ‘this spectrogram was
computed from this signal using these parameters’.
From here, it is a small step to go beyond a rela-
tional database to a deductive database, where log-
ical predicates are the basic representational tool,
and information can be represented either as facts
or inference rules. For example, if a query requests
spectrograms of wind music, a spectrogram of a
recording of an oboe performance could be retrieved
by making a chain of deductions based on some gen-
eral rules encoded as logical formulæ, such as ‘if x is

AES 120th Convention, Paris, France, 2006 May 20–23

Page 2 of 10



Abdallah et al. An ontology-based approach to information management for music analysis systems

an oboe, then x is a wind instrument’. In the next
section, we review some of the terminology of pro-
postional and predicate logic so that we can see how
statements such as these can be encoded.

3. A REVIEW OF PREDICATE CALCULUS
FOR KNOWLEDGE REPRESENTATION

The propositional calculus provides a formal mech-
anism for reasoning about statements built using
atomic propositions and logical connectives. An
atomic proposition is a symbol, e.g. p or q, standing
for something which may be true or false, e.g. ‘snarks
have 7 tentacles’ or ‘Norb is a snark’. The logical
connectives ∨ (or), ∧ (and), ¬ (not), ⊃ (implies)
and ≡ (equivalent to) can be used to build composite
formulæ such as ¬p∨q and p ⊃ q. Given a collection
of axioms, new statements consistent with the ax-
ioms can be deduced. Thus, a knowledge-base could
be represented as a set of axioms, and questions of
the form ‘is it true that ...?’ could be answered by
attempting to prove or disprove the query.

The propositional calculus is rather limited in the
sort of knowledge it can represent, because the in-
ternal structure of the atomic propositions, evident
in their natural language form, is hidden from the
logic. It is clear that the propositions given above
concern certain objects which may have a number
of tentacles, but there is no way to express these
concepts within the logic.

The predicate calculus extends the propositional cal-
culus by introducing both a domain of objects and
a way to express statements about these objects us-
ing predicates, which are essentially parameterised
propositions. For example, given the binary pred-
icate tentacles and a domain of objects which in-
cludes the individuals Norb and Zork as well as
the natural numbers, the formulæ tentacles(Norb, 7)
and tentacles(Zork, 5) express propositions about the
numbers of tentacles belonging to those individuals.

The introduction of variables and quantification in-
creases the power of the language yet more. For
example, the two examples of atomic propositions
given at the beginning of the section can be ex-
pressed as

∀x.snark(x) ⊃ tentacles(x, 7), (1)
snark(Norb), (2)

where x is a variable which ranges over all ob-
jects in the domain. In this form they are much
more amenable to automatic reasoning; for exam-
ple, we can infer tentacles(Norb, 7) as a logical con-
sequence of the above two axioms. We can also
pose queries using this language, for example, we
can ask, ‘which (if any) objects have 7 tentacles?’
as ∃x.tentacles(x, 7). An inference engine would at-
tempt to prove this by searching for objects in the
domain for which tentacles(x, 7) is true. In this
way, a query can retrieve data satisfying given con-
straints, something which is obviously necessary for
a practical information management system.

The logic-based language is more powerful than the
SQL commonly used to access a relational database
management system, but nonetheless, each predi-
cate can be likened to a table in a database, with
each tuple of values for which the predicate is true
corresponding to a row in the table. The calculus al-
lows predicates to be defined using rules rather than
as an explicit set of tuples, but these rules can be
more complex than those allowed in SQL views.

A large part of building a logic-based information
system is deciding what types of objects are going
to be in the domain of discourse and what predicates
are going to be relevant. Designing an ontology [2] of
the domain involves identifying the important con-
cepts and relations, and as such can help to bring
some order to the potentially chaotic collection of
predicates that could be defined. In the next sec-
tion, we give an overview of the ontology of music
production and computation which we have used in
our information management system.

4. AN ONTOLOGY OF MUSIC AND
COMPUTATION

A review of the literature on ontology development
highlighted a number of points to consider when de-
signing an ontology. These include modularity [3]
and ontological ‘hygiene’ as addressed by OntoClean
methodology [4]. In addition, we have adopted or
made reference to some of the ontological structures
to be found in previous ontology projects, includ-
ing MusicBrainz [5], DOLCE [6], SUMO [7], and
the ABC/Harmony project [8], though none of these
was deemed suitable as a direct base for our system,
being either too general or too specific.

AES 120th Convention, Paris, France, 2006 May 20–23

Page 3 of 10



Abdallah et al. An ontology-based approach to information management for music analysis systems

AgentFactor

Product

Event
hasSubEvent

hasAgent
hasProduct

hasFactor

Agent
Instrument

Score

Sound

Performance

hasAgent

usesInstrument

hasProduct

Time

Place

time

place

Form Style

Role

Signal

Performing

Composing

Composition

Recording

PersonGroup

Opus

hasStyle
hasForm

hasProduct

hasScore

agentHasRole

hasProduct

hasMember

hasFactor

hasFactor
hasAgent

Timeline

onTimeline

hasFactor

Fig. 1: Some of the top level classes in the music on-
tology The dotted lines indicate subclass relationships,
while the labelled lines represent binary predicates relat-
ing objects of the two classes at either end of the line.

Given that we wish to represent information about
music and music analysis, our ontology must cover
a wide range of concepts, including non-physical
entities such as Mahlers’s Second Symphony, hu-
man agents like composers and performers, physi-
cal events such as particular performances, occur-
rent sounds and recordings, and informational ob-
jects like digital signals, the functions analyse them
and the derived data produced by the analyses.

The three main areas covered by the ontology are (a)
the physical events surrounding an audio recording,
(b) the time-based signals in a collection and (c) the
algorithms available to analyse those signals. Some
of the top-level classes in our system are illustrated
in fig. 1 and described in greater detail below.

4.1. Events

Music production usually involves physical events,
which occur at a certain place and time and which
can involve the participation of a number of phys-
ical objects both animate and inanimate. Because
of the richness of the physical world, there can be
a large amount of information associated with any
given event, and finding a way to represent this flex-
ibly within a formal logic has been the subject of
much research [9, 10, 11, 12, 13, 14].

More recently, the so-called token reification [15, 16]
approach has emerged as a consensus, where a first-
class object or ‘token’ is used to represent each in-
dividual event occurence, and a collection of predi-
cates is used to relate each token with information
pertaining to that event. For example, partial infor-
mation about Martin Luther King’s ‘I have a dream’
speech could be stated as follows:

speech(e1)
∧ (∃t.eventTime(e1, t) ∧ during(t, 1963))
∧ participant(e1,M.L.King, speaker).

Note that the subsequent acquisition of more de-
tailed information, such as the precise date or loca-
tion, does not require a redesign of the predicates
used thus far and does not invalidate any previous
statements.

Regarding the ontological status of event tokens, we
largely adopt the view expressed by Allen and Fer-
guson [17]:

[. . . ] that events are primarily linguistic or
cognitive in nature. That is, the world does
not really contain events. Rather, events
are the way by which agents classify certain
useful and relevant patterns of change.

We might also expand the last sentence to say that
events are the way by which cognitive agents clas-
sify arbitrary regions of space-time. Hence, the event
token represents what is essentially an act of clas-
sification. This definition is broad enough to in-
clude physical objects, dynamic processes (e.g. rain),
sounds (an acoustic field defined over some space-
time region), and even transduction and recording
to produce a digital signal. It is also broad enough
to include ‘acts of classification’ by artificial cogni-
tive agents, such as the computational model of song
segmentation discussed in § 6. A typical description
of some events involved in a recording process are
illustrated in fig. 2.

The event representation we have adopted is based
on the token-reification approach, with the addition
of sub-events to represent information about com-
plex events in a structured and non-ambiguous way.
A complex event, perhaps involving many agents

AES 120th Convention, Paris, France, 2006 May 20–23

Page 4 of 10



Abdallah et al. An ontology-based approach to information management for music analysis systems

Fig. 2: Some events involved in a recording process. In
this graph, the nodes represent specific objects rather
than classes.

and instruments, can be broken into simpler sub-
events, each of which can carry part of the informa-
tion pertaining to the complex whole. For example,
a group performance can be described in more de-
tail by considering a number of parallel sub-events,
each of which represents the participation of one per-
former using one musical instrument (see fig. 1 for
some of the relevant classes and properties).

Each event can be associated with a time-point or
a time interval, which can either be given explicitly,
e.g. ‘the year 1963’, or by specifying its temporal
relationship with other intervals, e.g. ‘during 1963’.
Relationships between intervalse can be specified us-
ing the thirteen Allen [10] relations: before, during,
overlaps, meets, starts, finishes, their inverses, and
equals. These relations can be applied to any objects
which are temporally structured, whether this be in
physical time or in some abstract temporal space,
such as segments of a musical score, where times
may not be defined in seconds as such, but in ‘score
time’ specified in measures and beats.

4.2. Time-based signals

A fundamental component of the data model is the
ability to represent unambiguously the temporal re-
lationships between the collection of signal frag-
ments referenced in the database. This includes not

a b
h0

h1

h2

h3

Fig. 3: An example of the relationships that can be de-
fined between timelines using timeline maps. The con-
tinuous timeline h0 is related to the three discrete time-
lines below through cascade of maps. The dotted out-
lines show the images of the continuous time intervals a
and b in the different timelines. On the left, the poten-
tial influence of values associated with interval a spreads
out, while on the right, the discrete time intervals which
depend solely on b get progressively narrower, until, on
timeline h3, there is no time point which is dependent
on events within b alone.

only the audio signals, but also all the derived signals
obtained by analysing the audio, such as spectro-
grams, estimates of short-term energy or fundamen-
tal frequency, and so on. It also includes the tempo-
ral aspects of the event ontology discussed above: we
may want to state the relationship between the time
interval occupied by a given event and the interval
covered by a recorded signal or any signal derived
from it. The representation of a signal simply as an
array of values is not sufficient to make these rela-
tionships explicit, and would not support the sort
automated reasoning we wish to do.

The solution we have adopted is in a large part
a synthesis of previous work on temporal logics
[10, 18, 19], which attempt to construct an axiomatic
theory of time within the framework of a formal
logic. This involves introducing several new types of
object into our domain of discourse. Multiple time-
lines, which may be continuous or discrete, represent
linear pieces of time underlying the different unre-
lated events and signals within the system. Each
timeline provides a ‘backbone’ which supports the
definition of multiple related signals. Time coordi-
nate systems provide a way to address time-points

AES 120th Convention, Paris, France, 2006 May 20–23

Page 5 of 10



Abdallah et al. An ontology-based approach to information management for music analysis systems

1 2 3 4

-1 0 1 2-2

5 6

fragments
signal

coordinate
spaces

discrete timeline

missing data

Fig. 4: The objects and relationships involved in defin-
ing a discrete time signal. The signal is declared as a
function of points on a discrete timeline, but it is de-
fined relative to one or more coordinate systems using a
series of fragments, which are functions on the coordi-
nate spaces.

numerically. The relationship between pairs of time-
lines, such as the one between the continuous phys-
ical time of an audio signal and the discrete time of
its digital representation, is captured using timeline
maps—see Fig. 3 for an example.

A particular signal is then defined in relation to a
particular timeline using one or more coordinate sys-
tems to attach the signal data to particular time-
points—Fig. 4 shows an example of a (rather short)
signal defined in two fragments (which could be func-
tions or Matlab arrays); these are attached to a dis-
crete timeline via two integer coordinate systems.

4.3. Computation and derived data
To keep track of computed data, we recognise that
most of the computations we are interested in are
functional in the mathematical sense, that is, a set
of input-output pairs where each input has at most
one output. Our data model, on the other hand, is
relational, that is, composed of sets of tuples. Since
every function is also a relation, a computational
system built from a network of functions automati-
cally defines a relational schema which can be used
to store the results of each computation—it amounts
to tabling or memoising each function evaluation.
The data can then be retrieved using a query which
closely parallels the expression used to compute that

data in the first place. Essentially, we treat each
function like a ‘virtual table’, any row of which can
be computed on demand given a value in the domain
of the function (which may may be a tuple corre-
sponding to several columns). However, we can also
arrange that each time a row is computed in this way,
it is stored as a row in an actual table. These tabled
rows can subsequently be enumerated and provide
a record of previous computations. Our approach is
similar in spirit to the tabling implemented in the
XSB Prolog system [20], but we only allow tabling
of predicates which correspond to functions.

4.4. Closing the semantic gap

Having expressed both circumstantially related
information—which may have some ‘high level’ or
‘semantic’ value—and derived information in the
same language, that of predicate logic, we are in
a good position to make inferences from one to the
other; that is, we are well placed to ‘close the se-
mantic gap’. For example, the score of a piece of
music might be stored in the database along with a
performance of that piece; if we then design an algo-
rithm to transcribe the melody from the audio signal
associated with the performance, the results of that
computation are on the same semantic footing as the
known score. A generalised concept of ‘score’ can
then be defined that includes both explicitly asso-
ciated scores (the circumstantially related informa-
tion) and automatically computed scores. Querying
the system for these generalised scores of the piece
would then retrieve both types.

4.5. Extensibility of the ontology

We do not claim to have achieved complete ex-
pressiveness for music production knowledge, in the
sense that we have not included every concept that
might be useful in some situation. There are specific
classes, however, which are intended to be specialis-
able (by subclassing) in order to be able to describe
specific circumstances. For example, any instrument
taxonomy can be attached below the root intrument
class, or any taxonomy of musical genre could be
placed under the root genre concept. Similarly, new
event classes could be defined to describe, for exam-
ple, novel production processes.

AES 120th Convention, Paris, France, 2006 May 20–23

Page 6 of 10



Abdallah et al. An ontology-based approach to information management for music analysis systems

5. IMPLEMENTATION

In our current implementation, the ontology is coded
in the description logic language OWL-DL. The dif-
ferent components of the system are integrated using
Jena, an open source library for semantic web ap-
plications. The database is made available as a web
service, taking queries in SPARQL (a SQL-like query
language for RDF triples). A Prolog client has been
implemented to allow standard Prolog-style queries
to be made using predicates with unbound variables
and returning matches one-by-one on backtracking.
This style is expressive enough to handle very gen-
eral queries and logical inferences. It also allows
tight integration with the computational facet of the
system, built around a Prolog/Matlab interface.

The computation-management facet of the system
is built around a Prolog-to-Matlab interface which
uses Matlab as an external engine to evaluate Pro-
log terms representing Matlab expressions. The ser-
vice is provided through the binary predicate ===
same way as standard Prolog allows certain terms to
be evaluated using the is binary predicate. Matlab
objects can be made persistent using a mechanism
whereby the object is written to a .mat file with a
machine-generated name and subsequently referred
to using a locator term. These locator terms can
then be stored in the database, rather than storing
the array itself as a binary object.

6. A CASE STUDY: SEGMENTATION FROM
AUDIO

To illustrate how a unified information structure can
be of use in practice, we describe an experiment in
segmentation from audio, which examined the per-
formance of several segmentation algorithms on a
collection of popular songs. The experiment is de-
scribed in greater detail elsewhere [21]; here we focus
on the information management framework that was
used to support it. Note that Prolog predicates are
conventionally referred to by their name and arity in
the form Name/Arity, e.g. is/2; we will adopt this
convention in the remainder.

6.1. Representation of songs and manual
segmentations

The audio database contained 14 popular songs rep-
resented as 14 performance events, each of which is

associated with an agent (the performer), the name
of the piece, and one or more audio files (e.g. with
different sampling rates or encodings). The Prolog
predicate piece_signal/2 provides a simple way to
query this information from the command line by
wrapping RDF statements, for example:

?- piece_signal(’The Beatles’:T,S@R), int(L)===length(S).

>> reading wave header...done.

T = ’A Hard Days Night’
S = wavedata(‘’/audio/The_Beatles_##_A_Hard_Days_Night.wav’)
R = 11025
L = 1762848 ;

>> reading wave header...done.

T = ’Love Me Do’
S = wavedata(‘’/audio/The_Beatles_##_Love_Me_Do.wav’)
R = 11025
L = 1661472

The variables T, S, R, L are bound to the song name,
the signal data, the sampling rate, and the length of
the signal respectively. Note that the signal data is
represented as term, which when evaluated as a Mat-
lab expression through the Prolog-Matlab interface,
returns an object containing the signal data. The
===/2 operator triggers a Matlab evaluation, in this
case to find the length of the signal; ‘reading wave
header’ is actually a message from the wavedata
function.

The human segmentation of each song is also avail-
able through a similar mechanism, for example, the
following query returns a the songs with more than
10 segment types:

?- piece_structure(P,E), structure_numclasses(E,N), N>10.

P = ’Cranberries’:’Zombie’
E = seg_read(‘’/struct/Cranberries_##_Zombie.structure.txt’)
N = 11 ;

P = ’Deus’:’Suds and Soda’
E = seg_read(‘’/struct/Deus_##_Suds_and_Soda.structure.txt’)
N = 13

Note that E is bound to a Matlab expression
which would read a text file and return a Mat-
lab structure describing the segmentation, and
structure_numclasses/2 is a Prolog predicate
which calls Matlab to discover the number of
segment-types in a segmentation. The existence of a
segmentation implies the existence of one classified
event for each segment.

6.2. Managed computations

AES 120th Convention, Paris, France, 2006 May 20–23

Page 7 of 10



Abdallah et al. An ontology-based approach to information management for music analysis systems

A number of predicates are defined to manage the
different computations that make up the analysis.
For example, consider the following query:

?- piece_signal(_,Y),
powspec(Y,ms(100)/ms(200),X,_,_),
constq(X,50--5000,1/12,Z,T,F).

Y = wavedata(‘’/audio/A_Ha_##_Take_On_Me.wav’)@11025
X = h_powspec(h_fparms(11025, [100, 1000], [200, 1000]),

wavedata(‘’/audio/A_Ha_##_Take_On_Me.wav’))
Z = mat:d0509/m90318|x
T = h_timescale(h_fparms(11025, [100, 1000], [200, 1000]),

2501568)
F = 11025*as_cqedges(11025, [50, 5000], 1/12)

The first time this is executed, it will trigger the
computation of a power spectrogram (with 100 ms
hop size and 200 ms frame length) and a constant-
Q spectrogram (50–5000 Hz in 1/12-octave bands).
The constant-Q spectrogram (bound to Z) is repre-
sented as a locator term which points to a newly
created .mat file containing the spectrogram as an
array. The evaluation is also recorded as a new row
in the database, so that if the query is repeated, the
old result is returned rather than being recomputed.

A very similar query can be used to retrieve and
plot all the previously generated constant-Q spec-
trograms along with the parameters used to generate
them (the ?? operator passes the following expres-
sion to Matlab for evaluation, in this case, producing
an image of the spectrogram):

?- constq(_,R,Q,Z,_,_), ??imagesc(log(Z)).

R = 50--5000
Q = 1/12
Z = mat:d0509/m90318|x ;

R = 62.5--16000
Q = 1/8
Z = mat:d0509/m08805|x

Further down the processing chain, the core
of the segmentation is accessed through the
segmentation/5 predicate, which has the form

segmentation(Method,NumTypes,TimelineMap,InSeq,OutSeq).

Without going into a detailed description, note that
the first argument is a term which specifies which
of several variant algorithms is used, as well as any
variant-specific parameters it may require, so that
a goal of the form segmentation(_,K,TM,X,Y) ab-
stracts away the details of each segmentation algo-
rithm and retrieves the union of their result-sets.

6.3. Segmentation results

Since all the information about each test piece is ac-
cessible within the same framework, the system can
manage the evaluation of the results and even the
generation of properly annotated figures, rendered
using Matlab and stored directly to disk. Fig. 5
shows the result of such a process on the song Smells
like teen spirit by Nirvana. At this stage of the com-
putation, where several segmentation algorithms are
available, we can begin to see the utility of apply-
ing ontological concepts to systems of functions for
assigning semantic value to functions and computed
data.

As noted above, the tuple-set for each segmentation
function is a subset of a more general ‘segmentation’
relation. By finding some degree of overlap between
these putative segmentation relations and the rela-
tion representing the ‘true’ notion of ‘segmentation’
(perhaps by looking at segmentations generated by
humans), we gain some justification in stating that
the result of a function is indeed ‘a segmentation’,
that is, assigning the function a particular semantic
value. Returning to our event ontology, the exis-
tence of a machine-generated segmentation implies
the existence of a number of events just as in the
case of the human segmentation; the only difference
is that these events are acts of machine cognition,
rather than human cognition.

7. CONCLUSIONS AND FURTHER WORK

In this paper we described how we can represent in-
formation about both music production and signal
analysis in a single logic-based structure. We also
described an ontology of music production and com-
putation, which we have implemented using stan-
dard semantic web technologies.

Describing computational and derived data in a uni-
fied system model based on an ontology helps to cre-
ate what we might call a semantic workspace. Ev-
ery piece of data added to the structure automati-
cally gains semantic value by virtue of its relation-
ships with other existing data. In the experiment
described in § 6, this information structure helped
greatly in keeping track of hundreds of segmenta-
tions, enabling a thorough exploration of the param-
eter space, and resulting in a database of over 30,000
tabled function evaluations.

AES 120th Convention, Paris, France, 2006 May 20–23

Page 8 of 10



Abdallah et al. An ontology-based approach to information management for music analysis systems

Nirvana:Smells Like Teen Spirit

80 state HMM histograms

pairwise(kl) : regions(0.03114,0.06033,0.9543), info(0.1888,2.039,0.6317)

histclust(mf) : regions(0.03168,0.06053,0.9539), info(0.3609,1.859,0.812)

0 50 100 150 200 250

annotation

time/s

Fig. 5: Segmentation of the song Smells like teen spirit by Nirvana using two different algorithms. The panels
contain, from top to bottom, a constant-Q spectrogram of the audio signal; a sequence of short-term HMM state
occupancy histograms resulting from an HMM fitted to the spectrogram; two segmentations produced by two different
algorithms, and finally, the ‘ground-truth’ segmentation provided by a (human) expert listener.

The analysis of the results was also managed from
within the system, using Prolog queries to define
which results to aggregate for each figure and calling
Matlab to produce the figures themselves.

A possible extension to this would be to do a sta-
tistical analysis to judge whether or not a particular
algorithm has successfully captured a given concept,
and if so, to add this to the ontology of the system
so that the algorithm gains a semantic value; subse-
quent queries involving this concept would then be
able to invoke that algorithm even if no key annota-
tions are present in the knowledge base. This would
be an example ‘closing the semantic gap’.

The ontology we have developed, along with all
the reasoning layers (both OWL-based reasoning
and computation-related reasoning), could poten-
tially form the basis of a musical semantic web. We
are currently working on adapting the system so
that information can be distributed in a peer-to-peer
network environment, where each peer can provide
database or computational services either in soft-
ware or by consulting a human. In this way, we hope
to bring the vision of the semantic web to fruition
for music processing applications.

8. ACKNOWLEDGMENTS

The authors acknowledge the support of the UK
Engineering and Physical Science Research Coun-
cil (EPSRC) for support of the SeMMA project
(GR/S84743), and both the Centre For Digital
Music and the Department of Computer Science
at Queen Mary University of London for the stu-
dentship for Yves Raimond.

9. REFERENCES

[1] E. F. Codd, “A relational model of data for
large shared data banks,” Communications of
the ACM, vol. 13, no. 6, pp. 377–387, 1970.

[2] F. Baader, I. Horrocks, and U. Sattler, “De-
scription logics as ontology languages for the
semantic web,” in Essays in Honor of Jörg
Siekmann, ser. Lecture Notes in Artificial In-
telligence, D. Hutter and W. Stephan, Eds.
Springer, 2003.

[3] A. L. Rector, “Modularisation of domain on-
tologies implemented in description logics and

AES 120th Convention, Paris, France, 2006 May 20–23

Page 9 of 10



Abdallah et al. An ontology-based approach to information management for music analysis systems

related formalisms including owl,” in Proceed-
ings of the international conference on Knowl-
edge capture. ACM Press, 2003, pp. 121–128.

[4] C. Welty and N. Guarino, “Supporting ontolog-
ical analysis of taxonomic relationships,” Data
and Knowledge Engineering, vol. 39, pp. 51–74,
2001.

[5] A. Swartz, “Musicbrainz: A semantic web ser-
vice.” IEEE Intelligent Systems, vol. 17, no. 1,
pp. 76–77, 2002.

[6] C. Masolo, S. Borgo, A. Gangemi, N. Guar-
ino, and A. Oltramari, “Wonderweb deliverable
d18: Ontology library (final),” Laboratory for
Applied Ontology - ISTC-CNR, Trento, Italy,
Tech. Rep., 2003.

[7] A. Pease, I. Niles, and J. Li, “The Suggested
Upper Merged Ontology: A large ontology
for the semantic web and its applications,” in
Working Notes of the AAAI-2002 Workshop on
Ontologies and the Semantic Web, Edmonton,
Canada, 2002.

[8] C. Lagoze and J. Hunter, “The ABC ontology
and model,” Journal of Digital Information,
vol. 2, no. 2, 2001. [Online]. Available: http://
jodi.ecs.soton.ac.uk/Articles/v02/i02/Lagoze/

[9] J. McCarthy and P. J. Hayes, “Some philo-
sophical problems from the standpoint of
artificial intelligence,” in Machine Intelligence,
B. Meltzer and D. Michie, Eds. Edinburgh
University Press, 1969, vol. 4, pp. 463–
502. [Online]. Available: http://www-formal.
stanford.edu/jmc/mcchay69/mcchay69.html

[10] J. Allen, “Towards a general theory of action
and time,” Artificial Intelligence, vol. 23, pp.
123–154, 1984.

[11] R. Kowalski and M. Sergot, “A logic-based cal-
culus of events,” New Generation Computing,
vol. 4, pp. 67–95, 1986.

[12] A. Galton, “The logic of occurrence,” in Tem-
poral Logics and their Applications, A. Galton,
Ed. London: Academic Press, 1987, ch. 5, pp.
169–196.

[13] Y. Shoham, Reasoning about Change: Time
and Causation from the Standpoint of Artifi-
cial Intelligence. Cambridge, MA: MIT Press,
1988.

[14] M. P. Shanahan, “The event calculus ex-
plained,” in Artificial Intelligence Today, Lec-
ture Notes in AI no. 1600, M. J. Woolridge and
M. Veloso, Eds. Springer, 1999, pp. 409–430.

[15] A. Galton, “Reified temporal theories and how
to unreify them,” in Proceedings of IJCAI’91,
1991.

[16] L. Vila and H. Reichgelt, “The token reification
approach to temporal reasoning,” Artificial
Intelligence, vol. 83, no. 1, pp. 59–74,
1996. [Online]. Available: citeseer.ist.psu.edu/
vila93token.html

[17] J. F. Allen and G. Ferguson, “Actions and
events in interval temporal logic,” University
of Rochester Computer Science Department,
Tech. Rep., 1994.

[18] P. Hayes, “A catalog of temporal theories,”
Beckmann Institute, University of Illinois,
Tech. Rep. UIUC-BI-AI-96-01, 1995.

[19] L. Vila, “A survey on temporal reasoning
in artificial intelligence,” AI Communications,
vol. 7, no. 1, pp. 4–28, 1994.

[20] K. Sagonas, T. Swift, and D. S. Warren, “Xsb as
an efficient deductive database engine,” in SIG-
MOD ’94: Proceedings of the 1994 ACM SIG-
MOD international conference on Management
of data. New York, NY, USA: ACM Press,
1994, pp. 442–453.

[21] S. Abdallah, K. Noland, M. Sandler, M. Casey,
and C. Rhodes, “Theory and evaluation of a
bayesian music structure extractor,” in Proceed-
ings of the Sixth International Conference on
Music Information Retrieval, J. D. Reiss and
G. A. Wiggins, Eds., 2005, pp. 420–425.

AES 120th Convention, Paris, France, 2006 May 20–23

Page 10 of 10


